$\left[=\sum(\Delta / \sigma)^{2}\right]$ values are $5 \cdot 9,1.6$ and $12 \cdot 0$, respectively. The dihedral angle between the pyridine and phenyl rings is $9.4(9)^{\circ}$; between the pyridine ring and plane 3 it is $10.7(9)^{\circ}$. Similar values were also observed in N-salicylidene-3-aminopyridine [2-(3-pyridyliminomethyl)phenol] (Moustakali-Mavridis, Hadjoudis \& Mavridis, 1980), where the corresponding dihedral angles were 14.8 and 14.2° respectively.

The deformation of the molecule can be seen from the torsion angles $\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{C}(8)=178.0$ (8), $\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{C}(9)=167 \cdot 6(9)$ and $\mathrm{C}(7)-\mathrm{N}(1)-$ $\mathrm{C}(8)-\mathrm{N}(2)=-11.4(13)^{\circ}$. The latter two values show that the pyridine ring is rotated by $\sim 12^{\circ}$ about $N(1)-C(8)$ relative to the rest of the molecule, as observed in N-salicylidene-3-aminopyridine. In the latter case, $\mathrm{H}(7)$ and the corresponding H of the C atom that substitutes $N(2)$ are located at a distance less than the van der Waals radii. This fact was used to explain the observed deformation, since steric hindrance was supposed to exist. However, in the present compound $\mathrm{N}(2)$ is cis to $\mathrm{H}(7)$ and there is no possibility for $\mathrm{H} \cdots \mathrm{H}$ steric hindrance. Since some authors claim that there is a relation between the photochromic properties of a compound and its planarity (Moustakali-Mavridis, Hadjoudis \& Mavridis, 1978), studies of these properties will be undertaken in this case.

Fig. 2 shows the projection of the structure onto the $x z$ plane, revealing some of the shortest intermolecular distances. These indicate that the packing in the crystal is due only to van der Waals interactions.

We are grateful to Professor Evgenia Spodine (Facultad de Ciencias Básicas y Farmacéuticas, Universidad de Chile) for helpful discussions and to Dr F. H. Cano (Instituto de Quimica-Física 'Rocasolano' de Madrid, Spain) for collecting the intensities. This research was supported by the Departamento de Desarrollo de la Investigación, Universidad de Chile (E938-8125).

Fig. 2. Structure as viewed along the b axis. The shortest intermolecular distances (\AA) are shown. Symmetry code: (i) x, y, z; (ii) $-x,-y,-z$; (iii) $1-x, 1-y, 1-z$; (iv) $x, \frac{3}{2}-y,-\frac{1}{2}+z$; (v) $x, 1-y, 1-z ;(\mathrm{vi})-x, \frac{1}{2}+y, \frac{1}{2}-z$.

References

Ahmed, F. R., Hall, S. R., Pippy, M. E. \& Huber, C. P. (1973). NRC Crystallographic Programs for the IBM/360 System. Accession Nos. 133-147 in J. Appl. Cryst. 6, 309-346.
Bar, I. \& Bernstein, J. (1977). Acta Cryst. B33, 1738-1744.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A 24, 321-324.
Main, P., Lessinger, L., Woolfson, M. M., Germain, G. \& Declerce, J. P. (1976). MULTAN76. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Moustakali-Mavridis, I., Hadjoudis, E. \& Mavridis, A. (1978). Acta Cryst. B34, 3709-3715.

Moustakali-Mavridis, I., Hadjoudis, E. \& Mavridis, A. (1980). Acta Cryst. B36, 1126-1130.

Nakal, H., Shiro, M., Ezumi, K., Sakata, S. \& Kubota, T. (1976). Acta Cryst. B32, 1827-1833.

Ottersen, T. \& Seff, K. (1974). Acta Cryst. B30, 955-959.
Stewart, J. M., Machin, P. A., Dickinson, C. W., Ammon, H. L., Heck, H. \& Flack, H. (1976). The XRAY76 system. Tech. Rep. TR-446. Computer Science Center, Univ. of Maryland, College Park, Maryland.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Acta Cryst. (1983). C39, 1465-1467

Structure Refinement of $\mathbf{1 , 2 , 3 - T r i a m i n o g u a n i d i n i u m ~ C h l o r i d e , ~} \mathbf{C H}_{9} \mathbf{N}_{6}^{+} \cdot \mathbf{C l}^{-}$

By A. J. Bracuti

US Army ARRADCOM, Large Caliber Weapons System Laboratory, Dover, New Jersey 0780 1, USA
(Received 19 May 1983; accepted 28 June 1983)

Abstract

M_{r}=140 \cdot 57, \quad P 6_{3} / m, \quad a=7.480\) (1), $c=$ 6.218 (1) $\AA, V=301.3 \AA^{3}, Z=2, D_{m}=1.550, D_{x}=$ $1.549 \mathrm{Mg} \mathrm{m}^{-3}, \mathrm{Cu} K \alpha, \lambda=1.54184 \AA, \mu=4.92 \mathrm{~mm}^{-1}$, $F(000)=148, T=296(1) \mathrm{K}, R=0 \cdot 049,280$ unique

0108-2701/83/101465-03\$01.50

reflections. The crystal structure consists of layers of ions parallel to (001) at $\pm \frac{1}{4} c$. Each Cl^{-}anion is hydrogen bonded to three triaminoguanidinium cations within each layer. Only the guanidinium H atoms form © 1983 International Union of Crystallography
hydrogen bonds with the Cl^{-}ions. The distance $\mathrm{N}(1)-\mathrm{Cl}$ is $3 \cdot 158(3) \AA$. The $\mathrm{C}-\mathrm{N}$ and $\mathrm{N}-\mathrm{N}$ bond lengths are 1.325 (2) and 1.411 (4) \AA, respectively.

Introduction. In an X-ray diffraction structure determination of hexagonal triaminoguanidinium chloride (TAGCl) using limited two-dimensional data, Okaya \& Pepinsky (1957) reported unit-cell dimensions of $a=7.528$ and $c=6.253 \AA$, and $\mathrm{C}-\mathrm{N}$ and $\mathrm{N}-\mathrm{N}$ bond lengths of 1.318 (9) and $1.450(14) \AA$, respectively. In a structure determination of orthorhombic triaminoguanidinium nitrate (TAGN), Bracuti (1979), utilizing three-dimensional diffraction data, reported $\mathrm{C}-\mathrm{N}$ bond lengths of 1.324 (6), 1.324 (6) and 1.318 (5) \AA [mean value 1.322 (6) \AA], and significantly shorter $\mathrm{N}-\mathrm{N}$ bond lengths of 1.415 (6), 1.407 (5) and 1.397 (5) \AA [mean value 1.406 (5) \AA]. In a neutron diffraction crystal structure refinement of TAGN, Choi \& Prince (1979) reported longer $\mathrm{C}-\mathrm{N}$ bond lengths of $1.332(3), 1.324(4)$, and 1.336 (4) \AA [mean value 1.331 (4) \AA], and significantly shorter $\mathrm{N}-\mathrm{N}$ bond lengths of 1.411 (9), 1.401 (5), and 1.396 (4) \AA [mean value 1.403 (6) A].

In view of the disagreement in the reported $\mathrm{N}-\mathrm{N}$ bond lengths and the large standard deviations in bond lengths reported by Okaya \& Pepinsky, a refinement of the TAGCl crystal structure utilizing three-dimensional data was undertaken.

Experimental. TAGCl recrystallized from water, colorless prismatic crystal $(0.15 \times 0.15 \times 0.20 \mathrm{~mm})$ mounted on a glass fiber with its long axis approximately coaxial with the φ axis of the goniometer. Enraf-Nonius CAD-4 computer-controlled κ-axis diffractometer equipped with a graphite-crystal incidentbeam monochromator. Lattice parameters obtained using 20 reflections in the range of $18^{\circ}<\theta<24^{\circ}$. Intensity data (upper limit $150^{\circ} 2 \theta$) collected with the $\omega-\theta$ scan technique on 302 reflections. 19 reflections rejected as unobserved $[F \leq 2 \sigma(F) ; \sigma(F)$ from counting statistics]. Three representative reflections measured every 25 min in order to check the crystal and electronic stability of the system yielded constant intensities within experimental error. Data corrected for Lorentz and polarization effects, no correction for absorption. Scattering factors from Cromer \& Liberman (1970). Non-hydrogen-atom positions for the trial structure taken from the Okaya \& Pepinsky (1957) TAGCl structure; H -atom positions from the TAGN structure determination (Bracuti, 1979). Anisotropic refinement carried out with the full-matrix least-squares program FLINUS, a modification of ORFLS (Busing, Martin \& Levy, 1962). $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ minimized; $w=1 / \sigma^{2}(F)$. A secondary-extinction function, $g=$ 1.370×10^{-5}, was also refined (Coppens \& Hamilton, 1970) with the mean free path length, T, treated as a constant. Refinement of 19 variable parameters con-
verged with a largest parameter shift of 0.009 times its e.s.d.; $R=0.049, \quad R_{w}=0.074, S=2.44 \quad(261$ observations, and 19 parameters varied).

Discussion. The atomic coordinates and thermal parameters are presented in Table 1;* the TAG cation and relevant bond lengths and angles are presented in Fig. 1; the crystal structure is shown in Fig. 2.

[^0]Table 1. Atomic coordinates and equivalent isotropic temperature factors and their standard deviations

Fig. 1. Triaminoguanidinium ions with relevant bond lengths ($\dot{\AA}$) and bond angles $\left(^{\circ}\right)$.

Fig. 2. Stereoscopic pair showing the TAGCl structure as viewed down the c axis.

With the exception of the six amino H atoms, all atoms in this structure lie in two parallel mirror planes at $\pm \frac{1}{4} c$. The planar TAG cations are stacked directly over one another in adjacent layers $3 \cdot 109$ (1) \AA apart; the Cl^{-}anions are stacked in alternate layers $6 \cdot 218$ (1) \AA apart. The closest interionic contacts between layers occur among the amino groups of the TAG cations and the Cl^{-}ions. The distance between the amino N atom and a Cl^{-}ion $\mathrm{N}(2)-\mathrm{Cl}$ is 3.684 (2) \AA. Although this interatomic distance is shorter than the $3.692 \AA$ reported by Okaya \& Pepinsky (1957), it is still larger than would be observed if hydrogen bonding were involved. In view of this, only van der Waals and Coulombic forces operate between adjacent layers of ions.

Within any layer, each Cl^{-}ion is surrounded by three TAG cations and is hydrogen bonded to three nearest-neighbor guanidinium N atoms with $\mathrm{N}(1)-\mathrm{Cl}$ $3 \cdot 158$ (3) \AA. Each Cl^{-}also has three nearest-neighbor amino groups with N atoms $[\mathrm{N}(2)-\mathrm{Cl}]$ at a distance of 3.579 (3) \AA as compared to $3.596 \AA$ reported by Okaya \& Pepinsky (1957).
The TAG cation (Fig. 1) displays $C_{3 h}$ symmetry with a $\mathrm{C}-\mathrm{N}(1)$ bond length of $1.325(2) \AA$ and an
$\mathrm{N}(1)-\mathrm{N}(2)$ bond length of 1.411 (4) \AA which agree with the mean bond lengths of 1.322 (6) and 1.406 (5) \AA observed in TAGN for $\mathrm{C}-\mathrm{N}(1)$ and $\mathrm{N}(1)-\mathrm{N}(2)$, respectively.

The X-ray diffraction data presented in this paper were obtained by the Molecular Structure Corp., College Station, Texas, under Contract DAAG29-76-D-0100.

References

Bracuti, A. J. (1979). Acta Cryst. B35, 760-761.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). orfls. Report ORNL-TM-305. Oak Ridge National Laboratory, Tennessee. The CDC 6600 version (CRYSNET Program Library, Brookhaven National Laboratory) incorporates modifications by W. C. Hamilton, J. A. Ibers, F. Bernstein \& L. Andrews.

Choi, C. S. \& Prince, E. (1979). Acta Cryst. B35, 761-763.
Coppens, P. \& Hamilton, W. C. (1970). Acta Cryst. A26, 71-83.
Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
Okaya, Y. \& Pepinsky, R. (1957). Acta Cryst. 10, 681.

Acta Cryst. (1983). C39, 1467-1469

Structure of the Ammonium Salt of cis-4-Methyl-2-oxido-1,3,2-dioxaphosphorinane 2-Sulphide, $\mathrm{NH}_{4}^{+} \cdot \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{3} \mathrm{PS}^{-}$

By Tadeusz J. Bartczak* and Wojciech Wolf
Institute of General Chemistry, Technical University, Żwirki 36, 90-924 Łódź, Poland

and T. Stanley Cameron
Department of Chemistry, Dalhousie University, Halifax, NS, Canada B3H 4J3
(Received 15 February 1983; accepted 21 June 1983)

Abstract

M_{r}=185.2\), orthorhombic, Pccn, $a=$ 18.154 (6), $\quad b=13.973$ (6), $\quad c=7.047$ (1) $\AA, \quad U=$ $1787.6 \AA^{3}, Z=8, \quad D_{x}=1.38 \mathrm{Mg} \mathrm{m}^{-3}$, Мо $K \alpha, \lambda=$ $0.71069 \AA, \quad \mu=0.439 \mathrm{~cm}^{-1}, \quad F(000)=784, \quad T=$ $295 \mathrm{~K}, R=0.054, R_{w}=0.051$, for 906 observed reflections. The structure comprises discrete $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{3} \mathrm{PS}^{-}$and $\mathrm{NH}_{4}{ }^{+}$ions bonded by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds into dimers around the twofold axis.

Introduction. The title compound was synthesized by Mikołajczyk \& Łuczak (1972) during their systematic studies of geometric isomerism in cyclic five- and six-membered phosphorus monothioacid derivatives, occurring when the molecule contains at least one

[^1]0108-2701/83/101467-03\$01.50
asymmetric centre at a ring carbon atom. The chemical background of this class of compounds has been described elsewhere (Bartczak, 1983). The present investigation was undertaken, as part of our systematic studies on the conformation and crystal chemistry of the 1,3,2-dioxaphosphorinane ring, to determine the localization of the negative charge in the molecule, i.e. whether the $\mathrm{NH}_{4}{ }^{+}$ion is linked to the sulphur or to the oxygen atom.

Experimental. Sample kindly supplied by Professor M. Mikołajczyk of the Centre of Molecular and Macromolecular Studies of the Polish Academy of Sciences in Łódź. Good colourless crystals grown from n-propanol- n-hexane 1:1 mixture by slow evaporation; preliminary Weissenberg and oscillation photographs © 1983 International Union of Crystallography

[^0]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 38695 (4 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^1]: * To whom correspondence should be addressed.

